Singularity analysis for autonomous and nonautonomous differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Lyapunov’s Second Method for Nonautonomous Differential Equations
Converse Lyapunov theorems are presented for nonautonomous systems modelled as skew product flows. These characterize various types of stability of invariant sets and pullback, forward and uniform attractors in such nonautonomous systems. MSC subject classification: 37B25, 37B55, 93D30
متن کاملUnstable Solutions of Nonautonomous Linear Differential Equations
The fact that the eigenvalues of the family of matrices A(t) do not determine the stability of non-autonomous differential equations x′ = A(t)x is well known. This point is often illustrated using examples in which the matrices A(t) have constant eigenvalues with negative real part, but the solutions of the corresponding differential equation grow in time. Here we provide an intuitive, geometri...
متن کاملPeriodic Solutions for Nonautonomous Differential Equations and Inclusions in Tubes
We study the existence of periodic trajectories for nonautonomous differential equations and inclusions remaining in a prescribed compact subset of an extended phase space. These sets of constraints are nonconvex right-continuous tubes not satisfying the viability tangential condition on the whole boundary. We find sufficient conditions for existence of viable periodic trajectories studying pro...
متن کاملExact solutions of nonlinear partial differential equations by singularity analysis
Whether integrable, partially integrable or nonintegrable, nonlinear partial differential equations (PDEs) can be handled from scratch with essentially the same toolbox, when one looks for analytic solutions in closed form. The basic tool is the appropriate use of the singularities of the solutions, and this can be done without knowing these solutions in advance. Since the elaboration of the si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis and Discrete Mathematics
سال: 2011
ISSN: 1452-8630,2406-100X
DOI: 10.2298/aadm110715016a